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Major depressive disorder (MDD) is clinically heterogeneous with prevalence rates twice as high

in women as in men. There are many possible sources of heterogeneity in MDD most of which

are not measured in a sufficiently comparable way across study samples. Here, we assess

genetic heterogeneity based on two fundamental measures, between-cohort and between-sex

heterogeneity. First, we used genome-wide association study (GWAS) summary statistics to

investigate between-cohort genetic heterogeneity using the 29 research cohorts of the Psychi-

atric Genomics Consortium (PGC; N cases = 16,823, N controls = 25,632) and found that some

of the cohort heterogeneity can be attributed to ascertainment differences (such as recruitment

of cases from hospital vs. community sources). Second, we evaluated between-sex genetic het-

erogeneity using GWAS summary statistics from the PGC, Kaiser Permanente GERA, UK Bio-

bank, and the Danish iPSYCH studies but did not find convincing evidence for genetic

differences between the sexes. We conclude that there is no evidence that the heterogeneity

between MDD data sets and between sexes reflects genetic heterogeneity. Larger sample sizes

with detailed phenotypic records and genomic data remain the key to overcome heterogeneity

inherent in assessment of MDD.
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1 | INTRODUCTION

Major depressive disorder (MDD) is a common debilitating disorder

with lifetime risk of ~15% (Kessler & Bromet, 2013; Lohoff, 2010).

Genetic factors contribute to etiology of MDD with heritability esti-

mated to be ~37% (Kendler, Gatz, Gardner, & Pedersen, 2006; Sullivan,

Neale, & Kendler, 2000) of which about one-third is tracked by

common-genetic variants (Cross-Disorder Group of the Psychiatric

Genomics et al., 2013; Wray et al., 2018). Nongenetic factors also con-

tribute and environmental risk factors include childhood psychological

trauma (Chapman et al., 2004; Heim, Newport, Mletzko, Miller, &

Nemeroff, 2008; Vythilingam et al., 2002), social isolation (Bruce &

Hoff, 1994), and medical conditions, such as cardiovascular disease

(Fiedorowicz, 2014; Fraguas et al., 2007; Huffman, Celano, Beach,

Motiwala, & Januzzi, 2013). Most complex disorders are considered to

be heterogeneous at clinical presentation. For MDD, heterogeneity is

inherent in the diagnostic framework since diagnosis is achieved

through different combinations of endorsements of at least five out of

nine criteria in the context of depressed mood for most of the day

every day for 2 weeks (Diagnostic and Statistical Manual of Mental Dis-

orders [DSM] criteria). Heterogeneity in symptom profiles between

individuals reflects not only the symptoms endorsed, but for some cri-

teria (those assessing sleep, weight/appetite, and psychomotor func-

tion) the endorsement can reflect either increase or decrease (or both).

It is plausible that these clinical differences reflect different biological

pathways. The lack of a biological “gold standard” definition in psychiat-

ric illness is well recognized (Kapur, Phillips, & Insel, 2012), and a key

question for the field is whether genetic heterogeneity underpins phe-

notypic heterogeneity (Fanous & Kendler, 2005), and if genome-wide

genetic data can support analyses that demonstrate genetic heteroge-

neity (Han et al., 2016). Here, we assess genetic heterogeneity based

on two fundamental measures available to us, between-cohort and

between-sex heterogeneity. While nonbiological factors (such as ascer-

tainment strategy) could contribute to both between-cohort and

between-sex heterogeneity, evidence for between-sex heterogeneity

may reflect, at least in part, biological differences.

Prevalence rates of MDD in women that are double those of men

are consistently reported in epidemiological studies, with lifetime risk

approximately 0.2 for females and 0.1 for males (Kessler, 2003).

Women tend to have younger age of onset, greater comorbidity with

panic and other anxiety disorders, whereas men exhibit stronger

comorbidity with alcohol dependence or abuse (Schuch, Roest, Nolen,

Penninx, & de Jonge, 2014). Attempts to link the epidemiological differ-

ences to biological differences have been less consistent. Some twin

studies reported significantly higher heritability in females (0.42, 95%

CI = 0.36–0.47) than males (0.29, 95% CI = 0.19–0.38), and with

genetic correlation significantly different from 1 (rg~0.60, 95%

CI = 0.31–0.99) (Kendler et al., 2006). Other studies failed to find dif-

ferences between sexes (Fernandez-Pujals et al., 2015). Drawing strong

conclusions may be confounded by reporting biases as males are more

likely to underreport their symptoms when compared to females (Hunt,

Auriemma, & Cashaw, 2003; Thornicroft et al., 2017).

We use genome-wide association study (GWAS) summary statis-

tics data to investigate genetic heterogeneity of MDD. We study

between-cohort genetic heterogeneity using data from the 29 indepen-

dent studies that comprise the Wave 2 PGC-MDD study (PGC29

[Wray et al., 2018]). We also investigate genetic heterogeneity by sex

using GWAS summary statistics from PGC29 and three other large data
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sets. We evaluate between-cohort and between-sex genetic heteroge-

neity estimates of SNP-heritabilities and genetic correlations. These

estimates of genetic parameters, calculated from genome-wide data,

provide single statistic summaries of the data. Specifically, differences

in SNP-heritability estimates between samples could imply real differ-

ences in the relative magnitude of genetic risk effect sizes between

samples or could reflect biases due to ascertainment characteristics of

the sample. In contrast, an estimate of a genetic correlation less than

one may reflect differences in the relative ordering of genetic risk

effects between samples. It is possible for SNP-heritabilities to differ

between samples but the genetic correlations to be one.

2 | MATERIALS AND METHODS

2.1 | Between-cohort heterogeneity

We investigate heterogeneity between cohorts from the PGC Working

Group for MDD (PGC-MDD) (Major Depressive Disorder Working

Group of the Psychiatric et al., 2013), which comprises 29 cohorts

(PGC29, 10 from Wave 1 (Major Depressive Disorder Working Group

of the Psychiatric et al., 2013) and 19 from Wave 2 (Wray et al., 2018)),

totaling 16,815 cases (68% female) and 25,485 controls (51% female)

(Table 1, Supporting Information Table S1). Cohorts represent individual

studies in which cases and controls were imputed together to the

1,000 Genomes reference panel (Genomes Project et al., 2010) from a

common set of SNPs that had been processed through a common qual-

ity control (QC) pipeline (Wray et al., 2018). For the majority of cohorts

(but not all), cases and controls were collected by the same research

group and were genotyped together on the same genotyping array. All

29 case cohorts passed a structured methodological review by MDD

assessment experts (DF Levinson and KS Kendler). Cases were required

to meet international consensus criteria (DSM-IV, International Statisti-

cal Classification of Diseases [ICD]-9, or ICD-10) (American Psychiatric

Association, 1994; World Health Organization, 1978, 1992) for a life-

time diagnosis of MDD established using structured diagnostic instru-

ments from assessments by trained interviewers, clinician-administered

checklists, or medical record review. Nonetheless, there were differ-

ences in ascertainment across cohorts (Supporting Information

Table S1). For example, the RADIANT cohort (rad3) (Lewis et al., 2010)

recruited cases of clinically assessed recurrent MDD, which being more

severe have lower lifetime risk ~5% (McGuffin, Katz, Watkins, & Ruth-

erford, 1996), compared to community samples such as the QIMR

cohorts (qi3c, qi6c, and qio2) assessed by self-report interview and with

lifetime risk ~24% (Mosing et al., 2009). To capture heterogeneity due

to ascertainment, we coded the 29 cohorts as identified in community,

psychiatric outpatient, psychiatric inpatients, or mixed in−/out-patient

settings (Supporting Information Table S1).

2.2 | Between-sex heterogeneity

We investigate between sex heterogeneity using four large MDD data

sets (Table 1). In addition to PGC29, we used the Genetic Epidemiol-

ogy Research on Adult Health and Aging (GERA) Cohort (Banda et al.,

2015) (where electronic medical records from the Kaiser Permanente

healthcare system were used to identify cases as individuals being

treated clinically for MDD, and controls had no recorded treatment

for any psychiatric disorder), the Danish iPSYCH cohort (where

national hospital records identified cases as those ever treated clini-

cally for MDD and controls as those who have not), and the volunteer

UK Biobank (Bycroft et al., 2018; Lane et al., 2016) (UKB) study. UKB

cases were those with either recorded ICD10 codes for MDD (F32,

F33) or self-report for seeking treatment for nerves, anxiety or

depression; for detailed description of the “broad depression” defini-

tion see reference (Howard et al., 2018). Exclusions for both cases

and controls were those with recorded schizophrenia, bipolar or men-

tal retardation diagnoses or prescriptions associated with these disor-

ders. Additional exclusions for controls included those with recorded

anxiety, phobic or autistic spectrum disorders. In all studies, cases and

controls were unrelated. GWAS summary statistics for each cohort

used the same methods as for PGC29.

2.3 | Statistical methods

We use GWAS summary statistics and linkage disequilibrium

(LD) score analysis (LDSC) (Bulik-Sullivan et al., 2015) to estimate the

total proportion of variance in liability attributable to SNPs genome-

wide (i.e., SNP-heritability). Bivariate LDSC was used to estimate the

genetic correlation tagged by genome-wide SNPs (rg) between two

traits. LDSC has been applied widely to GWAS summary statistics of

psychiatric (Anttila et al., 2018) and other disorders (Bulik-Sullivan

et al., 2015), and results have been shown to agree well with esti-

mates made from full individual-level genotype and phenotype data

using linear mixed model analysis (e.g., GREML [Yang et al., 2010]), as

long as the LD reference sample is drawn from a population that

appropriately reflects the samples contributing the GWAS summary

TABLE 1 Description of GWAS data sets for between-sex heterogeneity analyses

Data set Cases Controls Female cases Female controls Male cases Male controls Number of Cohortsa

PGC29 16,823 25,632 11,438 12,463 5,377 13,022 29b

GERA 7,162 38,287 5,152 20,650 2,010 17,637 1

UKB 113,769 208,801 73,292 99,385 40,477 109,426 1

iPSYCH 18,577 17,637 12,690 8,534 5,887 9,103 1

Total 156,331 290,357 102,572 141,032 53,751 149,188 32

a Cohort is defined as the cases and controls with genome-wide genotypes imputed from the same set of SNPs that have passed through a common quality
control pipeline. Mostly, cohort reflects a case–control sample collected by a PGC principal investigator.

b Cohorts ranged in size from 246 to 3,760 cases plus controls.
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statistics (Yang et al., 2015). A key advantage of LDSC is the minimal

computational requirements compared to methods that use individual

level data, and the ability to differentiate between genomic inflation

due to polygenicity and due to population stratification. Disadvan-

tages of LDSC are that standard errors (s.e.) of estimates can be

(about 50%) higher compared to when estimates are based on full

data, particularly for rg estimates (Ni, Moser, Schizophrenia Working

Group of the Psychiatric Genomics, Wray, & Lee, 2018).

SNP-heritability is estimated on the observed binary scale

h2SNP− cc, but these estimates depend on the proportion of cases in the

sample (P) and so are not easily comparable across cohorts. Hence, for

improved interpretability and comparison across studies, h2SNP− cc is

transformed to the liability scale h2SNP (Lee, Wray, Goddard, &

Visscher, 2011) based on normal distribution theory, given an

assumed lifetime risk of disease in the population (K):

h2SNP = h2SNP− cc
K 1−Kð Þð Þ2
P 1−Pð Þz2 ð1Þ

where z is the height of the standard normal density function when

truncated at proportion K. However, this transformation assumes that

controls are screened. Peyrot, Boomsma, Penninx, and Wray (2016)

showed that when the proportion of controls that are unscreened is u,

then transformation should be

h2SNP = h2SNP− cc
K 1−Kð Þð Þ2

P 1−Pð Þ 1− uKð Þ2z2
ð2Þ

which reduces to Equation 1 when all controls are screened, u = 0.

When diseases are uncommon, assuming controls are screened when

they are not makes little impact (Peyrot et al., 2016). However, for

very common disorders, such as MDD, the difference is not trivial. For

example, for K = 0.15, h2SNP− cc = 0.15, P = 0.5, then h2SNP= 0.18 when

controls are screened and 0.24 when unscreened. The rg estimates are

robust to P, K, and u, since these factors contribute to both numerator

and denominator of the correlation (which is defined as the estimate

of the additive genetic covariance divided by the product of the

square root of the SNP-heritabilities for the two traits). Hence rg esti-

mates are robust to ascertainment practices and approximately the

same where estimated on the case–control observed scale or liability

scales (Bulik-Sullivan, Finucane, et al., 2015). If the same genetic

effects contribute to disease risk between sexes or between cohorts

then rg is expected to be 1.

It was not possible to compare h2SNP of each PGC29 cohort,

because the per-cohort estimates had high s.e. (e.g., a cohort of

500 cases and 500 controls would be expected to produce h2SNP with

standard error of at minimum 0.38 [Visscher et al., 2014]). Instead we

estimated the h2SNP attributed to a cohort by evaluating its contribu-

tion to h2SNP estimates calculated from 500 random samplings of

cohorts drawn from the 29 PGC29 cohorts. In each sampling, we ran-

domly selected cohorts until the total sample size was ≥5,000, then

used the GWAS summary statistics meta-analyzed (weighted by s.e.)

in LDSC to estimate h2SNP assuming lifetime risk of K = 0.15, and

assuming controls are screened (Equation 1). To determine the contri-

bution to the h2SNP estimate from each cohort we fitted a linear model

with estimated h2SNP as the dependent variable regressed on indicator

variables set as 1 if the cohort contributed to the estimate (was

included in the random sampling), and 0 otherwise.

3 | RESULTS

3.1 | Between-cohort heterogeneity within PGC29

We estimated h2SNP in 500 random samplings of the cohorts from

PGC29. From a linear regression of h2SNP on indicator variables set as

1 if the cohort contributed to the estimate and 0 if it did not, we esti-

mated an h2SNP effect size deviation per cohort (y-axis Figure 1). Fif-

teen of the 29 cohorts had h2SNP deviations different from zero

(p < 0.05/29). We found that the cohorts nes1 (combined sample of

the Netherlands Study of Depression and Anxiety and the

Netherlands Twin Registry) (Boomsma et al., 2008; Penninx et al.,

2008) and gep3 (GenPod/NEWMEDS) (Lewis et al., 2011) contributed

most to variation in estimates of h2SNP, and explain 0.14 and 0.16,

respectively, of the variance in h2SNP estimates across the 500 sam-

plings. Samplings that included cohort nes1 had the highest average
−
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FIGURE 1 Cohort deviation estimates from the linear regression of

h2SNP estimates (from each of the 500 samplings of cohorts) on cohort

indicator variables set at 1 if the cohort was included in the sampling

that generated the h2SNP and 0 otherwise. In each sampling, cohorts

were selected at random until the total case/control sample size

exceeded 5,000. Cohort GWAS results were meta-analyzed and these

results passed into LDscore. h2SNP was estimated using Equation 1

transformation (K = 0.15) which assumes controls are screened. h2SNP

estimates of samplings were highest, on average, when cohort nes1
was included and lowest, on average, when cohort gep3 was included.
Wave 1 cohorts have an asterisk by their name and cohorts that have
unscreened controls are marked by a tilde. Continuous lines around
data-points are 95% confidence Intervals. For explanation of cohort
names see Supporting Information Table S1 [Color figure can be
viewed at wileyonlinelibrary.com]
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estimates of h2SNP, while samplings including gep3 had the lowest aver-

age estimates. These differences are in line with expectations based

on screening strategies for controls (Supporting Information Table S1).

The nes1 cohort used super-screened controls (Boomsma et al., 2008),

such that controls never scored higher than 0.65 on a general factor score

for anxious depression (mean = 0, SD = 0.7) derived from a combined

measure of neuroticism, anxiety, and depressive symptoms assessed via

longitudinal questionnaires over 15 years. In contrast, the gep3 cohort

was a case-only research cohort which was matched to independently

collected and genotyped controls (hence particularly stringent QC is

needed to combine the genotype data of the contributing cases and con-

trols). In fact, gep3 is one of seven cohorts for which controls were

unscreened for MDD (Figure 1), but only one other cohort used indepen-

dently genotyped controls (STAR*D, coded as stm2); together the seven

cohorts have lower mean beta-values, but not significantly so (p = 0.055).

The trend in these results might be explained by recognizing that SNP-

heritability is first estimated on the observed binary case–control scale

h2SNP− cc and then transformed to the liability scale h2SNP. Indeed, we

find that increasing sample prevalence (P in Equation 1) is significantly

associated with the estimated h2SNP (p = 0.00057), but not sex ratio

(p = 0.72). The application of the standard transformation

(Equation 1), as we have done, assumes screened controls and could

generate an underestimate of the SNP-heritability if controls were in

fact unscreened. Similarly, super-screening of controls could generate

an over-estimate of the true h2SNP. Hence, we expect that the standard

transformation would generate an overestimate for the nes1 cohort

(super-screened controls) and an underestimate for cohorts with

unscreened controls, consistent with our results.

Next, we investigated if h2SNP estimates differed based on the

research protocol to ascertain cases. For the same proportion of cases

and controls in the GWAS sample, we would expect the h2SNP− cc to be

higher for a clinically ascertained cohort than a community ascer-

tained cohort, further we would expect the transformation based on

K = 0.15 (Equation 1) to overestimate h2SNPwhen the true K is lower

(clinical cohort) and underestimate h2SNPwhen the true K is higher

(community cohort). There is evidence to support this hypothesis

(Figure 1). We found significant difference between the mean esti-

mates of community (−0.027, s.e. 0.007) vs noncommunity cohorts

(−0.08 s.e. 0.006) (with noncommunity comprising the three in- and

out-patient categories), using a one-sided, two-sample t test assuming

unequal variance (p = 0.028) (Supporting Information Table S4). The

difference became more significant (p = 0.015) when the cohorts we

had a priori reason to exclude, namely nes1 and gep3, based on dis-

cussions above were removed.

3.2 | Between-sex heterogeneity

Using the four large data sets (Table 1) we investigate sex-specific het-

erogeneity. We used bivariate LDSC to estimate the rg between all pairs

of the two sexes by four data sets, but the standard errors were high

(Supporting Information Table S2). rg involving the GERA_M data set

were not estimable, because of the negative/zero of h2SNP used in the

denominator of the rg estimate. The between-sex rg estimated from the

meta-analysis of the GWAS summary statistics of the 4 data sets was

0.86 (s.e. 0.04; pH0:rg=1= 3.0 × 10-4), and the meta-analysis of 12

male–female rg estimates was 0.76 (s.e. 0.03; pH0:rg = 1 = 8.9 × 10−16). At

face value these results imply genetic factors are only partially shared

between the sexes. However, this interpretation should be considered

with caution when benchmarked by the meta-analysis of 6 female–female

rg estimates of 0.72 (s.e. 0.04; pH0:rg = 1 = 4.9 × 10−11) and the meta-

analysis of 3 male–male rg estimates of 0.71 (s.e. 0.11; pH0:rg = 1 = 0.11)

Hence, the between-sex estimate of rg being significantly different from

zero likely reflects the general heterogeneity between the data sets rather

than being sex-specific.

Next, we investigated sex-specific estimates of h2SNP using LDSC

(Table 2, Supporting Information Table S3) to determine if there is evi-

dence for a greater genetic contribution to MDD risk in females then

males. We have power to detect differences of the order of 2*(s.e. of

male estimate + s.e. of female estimate). Initially, in the transformation

TABLE 2 Estimates of h2SNP from LDSC applied to sex-specific GWAS summary statistics

Female (s.e.) Males v1 (s.e.) Males v2 (s.e.) p-value v1 p-value v2

K 0.2 0.1 0.2

u 0 0 0.1

PGC29 0.20 (0.03) 0.07 (0.04) 0.09 (0.05) 0.61 0.68

GERA 0.15 (0.04) −0.02 (0.05) −0.03 (0.07) 0.55 0.57

UKB 0.10 (0.01) 0.07 (0.01) 0.10 (0.01) 0.77 0.94

iPSYCH 0.23 (0.03) 0.15 (0.04) 0.20 (0.05) 0.77 0.91

Meta-4 0.11 (0.005) 0.07 (0.006) 0.10 (0.007) 1.6 × 10−6 0.10

Meta-6 0.10 (0.005) 0.07 (0.006) 0.10 (0.008) 1.2 × 10−3 0.60

Meta-10 0.11 (0.004) 0.07 (0.004) 0.10 (0.005) 1.1 × 10−8 0.12

GWAS-Meta 0.08 (0.004) 0.06 (0.005) 0.08 (0.006) 6.6 × 10−4 0.64

Note. h2SNP estimates are presented on the liability scale achieved through transformation of the LDSC h2SNP− cc estimate accounting for the case prevalence

in the sample (P), the lifetime risk (K) of the disorder, and the proportion of cases in the control sample (u), Equation 2. Meta-4: meta-analysis of the h2SNP

estimates for the 4 data sets (PGC29, GERA, UKB, iPSYCH). Meta-6: meta-analysis of the 6 h2SNP estimates derived from the genetic covariance estimates

from bivariate LDSC between the 6 possible same-sex data set pairwise combinations. Meta-10: meta-analysis based on all h2SNP estimates contributing to

Meta-4 and Meta-6. GWAS-Meta: h2SNP estimated from the GWAS summary statistics of the 4 data sets. Versions v1 and v2 differ by K and u values; v2
hypothesis is that the lifetime risk of MDD is the same in men and women but that more cases go unreported in men, and hence cases could be included in
a screened control set.
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of the h2SNP− cc estimate to the liability scale (Equation 1) we assumed

K = 0.20 for females and K = 0.10 for males (Table 2), consistent with

literature reports that MDD is twice as common in females as males

(Weissman, Leaf, Holzer, Myers, & Tischler, 1984). The h2SNP esti-

mates were smaller for males (range −0.02 to 0.15) than for females

(range 0.10 to 0.23), but given the magnitude of the standard errors,

none of the h2SNP sex differences were significantly different for any

individual data set. However, meta-analysis of the estimates of the

four data sets did lead to estimates that were significantly different

(Meta-4 in Table 2; 0.07 in males vs. 0.11 in females, p = 1.6 × 10−6).

In addition, h2SNP estimated from the meta-analyzed GWAS results of

the four data sets also showed significant difference between males

and females (0.06 vs 0.08, p = 6.6 × 10−4; Table 2 GWAS-Meta). We

also meta-analyzed the six h2SNP values estimated from the genetic

covariance between pairs of same-sex data sets in bivariate LDSC

analysis. As the traits are (presumed to be) the same, the genetic

covariance is also an estimate of genetic variance (Supporting Infor-

mation Table S3; Table 2 Meta-6). This again showed lower mean esti-

mates for males with a significant difference between the sexes (0.07

in males vs 0.10 in females, p = 0.0012). For completeness, a meta-

analysis from all 10 of the estimates is provided (Table 2 Meta-10);

this uses the same data sets as the GWAS-Meta, but the latter uses all

the information jointly rather than pairwise. Before drawing strong

conclusions from these results, it is important to recognize that the

estimates of h2SNP depend on the choice of the lifetime risk estimates

(K in Equations 1 and 2) (Figure 2). The point estimates are more simi-

lar if the same lifetime risk is assumed between the sexes, but it is dif-

ficult to justify such an assumption, because it is not, at face value,
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supported by epidemiological data. However, since depression maybe

underreported in males (Martin, Neighbors, & Griffith, 2013; Thorni-

croft et al., 2017), for illustration purposes we could assume the true

lifetime risk of MDD is the same between the sexes (K = 0.20), but

that through underreporting the controls are contaminated by 0.10 of

cases (Equation 2, u = 0.1). Under these assumptions, the h2SNP esti-

mates are not significantly different between the sexes for any data

set (Figure 2, Table 2).

For completeness, we also estimated X-chromosome SNP-

heritability from the meta-analyzed cohorts for males and females

separately. However, the standard errors of the estimates were large

relative to the h2SNP estimates (h2SNP males=0.0025 (s.e. = 0.06);

h2SNP females=0.0005 (s.e. = 0.03), which meant estimation of the rg

between them was not meaningful.

4 | DISCUSSION

Heterogeneity in MDD is often discussed, but hard to investigate. In a

novel set of analyses, we explored the heterogeneity of MDD using

genetic data. The first set of analyses contrasted 29 PGC cohorts, by

estimating their average contribution to estimates of h2SNP from

repeated random samplings of cohorts selected into GWAS meta-ana-

lyses. While we found notable differences between cohorts in the

h2SNP contribution estimates (Figure 1), these differences could be

explained, at least partly, via knowledge of cohort ascertainment prac-

tices: higher contributions for cohorts ascertained in clinical compared

to community settings (Figure 1, p = 0.028), higher contribution from

a sample known to use super-screened controls (nes1), and a trend

toward lower contributions from samples that used unscreened con-

trols. One conclusion is that known cohort information about case

ascertainment status could be included usefully in analysis

methods to increase power. A framework for such an analysis has

been proposed (Zaitlen et al., 2012), but in practice the necessary

parameters relating to cohort specific risks are usually unknown.

In the seven samples contributing to the published PGC meta-

analysis (PGC29, GERA, iPSYCH, UK Biobank, deCode, Generation

Scotland, 23andMe) (Wray et al., 2018), h2SNP estimates ranged from

0.09 to 0.25 and the weighted mean rg for all pairwise combinations

was 0.76 (s.e. = 0.03), which is significantly different from one. The

cohorts had different recruitment strategies with ascertainment rang-

ing from self-report to national hospital records. Moreover, even

within the Wave 1 PGC-MDD research cohorts endorsement propor-

tions of the nine DSMIV criteria showed considerable heterogeneity

including between cohorts that had similar clinical ascertainment

strategies (Major Depressive Disorder Working Group of the Psychi-

atric et al., 2013). For example, endorsement rates of 56%, 27%, and

10% were recorded for the criterion symptom 4b, hypersomnia nearly

every day, for different early onset (<30 years) recurrent MDD sam-

ples (Major Depressive Disorder Working Group of the Psychiatric

et al., 2013). Despite the heterogeneity, out-of-sample prediction

demonstrated that the self-reported 23andMe GWAS results

explained variance in clinically ascertained cohorts with high signifi-

cance (Wray et al., 2018). Sample size remains the driving force for

genetic discovery in MDD. Ideally, larger sample sizes should be

accompanied by collection of detailed, consistent, and longitudinal

phenotypic data to enable more precise case and control

definitions.

We also investigated between-sex genetic heterogeneity. Our

sex-specific analyses found significantly smaller h2SNP for males than

females, a trend replicated in all four data sets, and hence was highly

significant in the meta-analysis of the four cohort estimates (Table 2 ,

male v1). However, we recognized that the comparisons of h2SNP

between the sexes depended on the choice of their respective lifetime

risks (Figure 2). For baseline analyses we used lifetime risk estimates

of K = 0.20 for females and K = 0.10 for males, consistent with a 2:1

risk for females versus males (Weissman et al., 1984), with higher

K values generating higher h2SNP estimates. One explanation for a

lower lifetime risk for males could be higher rates of underreporting

(Martin et al., 2013; Thornicroft et al., 2017). We calculated h2SNP

in males assuming the same lifetime risk as females, but with

incomplete screening of controls. Such a hypothetical scenario

generated similar estimates of h2SNP between the sexes (Figure 2,

Table 2).

In summary, our analyses demonstrate between-cohort genetic

heterogeneity, but this can be explained, at least in part, by known

factors such as case/control ascertainment. Investigation of between

sex heterogeneity provided no convincing evidence to support genetic

differences between the sexes. A robust conclusion is simply that

large sample sizes will overcome sample heterogeneity as demon-

strated in the latest major depression GWAS meta-analyses (Howard

et al., 2018; Wray et al., 2018). Based on differences in lifetime dis-

ease risk and differences in heritability, while assuming a similar num-

ber of contributing risk loci, we previously estimated that sample sizes

for GWAS need to be five times bigger for MDD than for schizophre-

nia (SCZ) (Wray et al., 2012). On the one hand, heterogeneity

between samples may push this estimate higher. On the other hand,

the heterogeneity may already account for the higher prevalence and

lower heritability. The PGC GWAS meta-analysis for MDD/major

depression based on a total effective sample size of 389,083 (Wray

et al., 2018) identified 44 independent significant loci. This compares

to 145 independent loci for SCZ from a total effective sample size of

99,863 (Pardiñas et al., 2018), hence requiring >12 times the sample

size for major depression compared to SCZ per genome-wide signifi-

cant locus. However, the relationship between sample size and variant

discovery is not linear (Wray et al., 2018) and so observing the sample

size ratios for discovery will be of interest as sample sizes increase.

Very large MDD case–control samples will allow novel methods to be

applied to assess evidence for genetic subsets, and will allow more

robust conclusions to be drawn about between sex differences. Larger

data sets are likely to lead to the development of new methods to

assess genetic heterogeneity (Han et al., 2016). There is a growing

interest in machine learning methods (Libbrecht & Noble, 2015) as a

strategy to identify phenotypically relevant genetic subsets, but

cohort heterogeneity must diminish their utility, making large elec-

tronic health or biobank samples collected and genotyped in a uniform

way of most value.
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